© Hilmar Ebert, Aachen    Chess - a Draw Game …!

Plies

+

1. 2. 3. 4. 5.

6.

Time

kN

07

/14

0.19

1.e4 d5 2.ed5: Sf6 3.Lb5+ Ld7 4.Lc4 c6 5.Sc3 b5

6.Lb3 b4

 00''

<
08

/14

0.19

1.e4 d5 2.ed5: Sf6 3.Lb5+ Ld7 4.Lc4 c6 5.Sc3 b5

6.Lb3 b4

 00''

<
09

/14

0.19

1.e4 d5 2.ed5: Sf6 3.Lb5+ Ld7 4.Lc4 c6 5.Sc3 b5

6.Lb3 b4

 00''

<
10

/14

0.19

1.e4 d5 2.ed5: Sf6 3.Lb5+ Ld7 4.Lc4 c6 5.Sc3 b5

6.Lb3 b4

 00''

<
11

/14

0.19

1.e4 d5 2.ed5: Sf6 3.Lb5+ Ld7 4.Lc4 c6 5.Sc3 b5

6.Lb3 b4

 00''

<
12

/29

0.16

1.e4 Sc6 2.Sf3 e5 3.Lc4 Lc5 4.d4 ed4: 5.Sg5 Sh6 6.Sf7 Lb4+

 00''

230
13 /35 0.19 1.e4 d5 2.de5: Dd5: 3.Sc3 Da5 4.Sf3 Sf6 5.Lc4 Sc6 6.d3 Lg4 08'' 7.807
14 /42 0.19 1.e4 d5 2.ed5: Sf6 3.d4 Sd5: 4.Sf3 Lg4 5.Sbd2 Sc6 6.Lb5 Dd7 28'' 27.267
15 /46 0.19 1.e4 e5 2.Sf3 Sf6 3.Sc3 Sc6 4.Lb5 Sd4 5.Lc4 d6 6.Sg5 d5 01' 32'' 86.139
16 /45 0.22 1.e4 e6 2.Sc3 d5 3.d4 de4: 4.Sd4: Sd7 5.Sf3 Sgf6 6.Ld3 Se4: 04' 38'' 266.568
17 /49 0.19 1.e4 d5 2.Sf3 Sf6 3.Se5: De7 4.Sf3 De4:+ 5.Le2 Df5 6.Sc3 Le7 10' 18'' 594.922
18 /53 0.19 1.e4 d5 2.ed5: Dd5: 3.Sc3 De6+ 4.Le2 Dg6 5.Lf3 Sf6 6.Sge2 e5 25' 24'' 1.505.028
19 /53 0.25 1.e4 d5 2.ed5: Dd5: 3.Sc3 Dd6 4.Sf3 Sf6 5.d4 a6 6.Ld3 Sc6 1 h 51' 6.544.283

20

/56

0.22

1.e4 e6 2.d4 d5 3.Sd2 c5 4.dc5: Sf6 5.e5 Sfd7

6.Sgf3 Dc7

4 h 30' 16.433.202

21

/58

0.16

1.e4 e6 2.d4 d5 3.Sd2 Sf6 4.e5 Sfd7 5.Sgf3 c5

6.c3 Sc6

8 h 05’

30.481.052

22

/99

0.22

1.e4 e5 2.Sf3 Sc6 3.Lc4 Lc5 4.d3 Sf6 5.0-0 0-0

6.Sc3 d6

32 h 25’

124.671.851

23

/68

0.22

1.e4 e6 2.d4 d5 3.Sc3 Sf6 4.Lg5 de4: 5.Se4: Sbd7

6.Sf3 h6

97 h 15’

375.716.329

24

/73

0.16

1.e4 e6 2.d4 d5 3.Sd2 Sf6 4.e5 Sfd7 5.f4 c5

6.dc5: Sc6

192 h 40’

729.183.489

25

/96

0.19

1.e4 e6 2.d4 d5 3.Sd2 Sf6  4.e5 Sfd7 5.f4 c5

6.dc5: Sc6

477 h 39

1.857.254.803

26

/??

0.??

?! ?! ?! ?! ?!

?!

?!

?!

  Here a more practical approach ... the analysis of the initial array of the chess game by one of the two leading chess programs ...!  
(Fritz-8 Athlon 3200+, 280 MB RAM, infinitive analysis, 1 variation ...)

 

"From the standpoint of von Neumann-Morgenstern game theory [von Neumann and Morgenstern (1944)] chess may be described as a trivial game. It is a two-person, zero-sum game of perfect information. Therefore the rational strategy for play is obvious: follow every branch in the game tree to a win, loss, or draw - the rules of the game guarantee that only a finite number of moves is required. Assign 1 to a win, 0 to a draw, and -1 to a loss, and minimax backwards to the present position."

Handbook of Game Theory Vol 1, Chapter 1   The Game of Chess. by  Herbert A. Simon  &  Jonathan Schaeffer

 

  Impressum © Alle Rechte vorbehalten  © All Rights Reserved  www.hilmar-ebert.de     Hit Counter  last update: 20.04.2013 23:28:27

 

© Dr. Hilmar Alquiros The Philippines 2002 ff.